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Abstract 

 
Fast decision support systems and accurate diagnosis have become significant in the rapidly 
growing healthcare sector. As the number of disparate medical IoT devices connected to the 
human body rises, fast and interrelated healthcare data retrieval gets harder and harder. One 
of the most important requirements for the Healthcare Internet of Things (HIoT) is semantic 
interoperability. The state-of-the-art HIoT systems have problems with bandwidth and latency. 
An extension of cloud computing called fog computing not only solves the latency problem 
but also provides other benefits including resource mobility and on-demand scalability. The 
recommended approach helps to lower latency and network bandwidth consumption in a 
system that provides semantic interoperability in healthcare organizations. To evaluate the 
system's language processing performance, we simulated it in three different contexts. 1. 
Polysemy resolution system 2. System for hyponymy -hypernymy resolution with polysemy 
3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and holonymy. In 
comparison to the other two systems, the third system has lower latency and network usage. 
The proposed framework can reduce the computation overhead of heterogeneous healthcare 
data. The simulation results show that fog computing can reduce delay, network usage, and 
energy consumption. 
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1. Introduction 

In the healthcare sector, semantic interoperability refers to a healthcare system’s ability to 
read and process medical data generated or controlled by another healthcare system. In the 
Internet of Things age, healthcare data must be monitored in real-time, relevant decisions made, 
and alerts issued in seconds. Furthermore, the data generated by IoT devices is massive, 
primarily in big data. Medical data from IoT devices and unstructured electronic health records 
involve complex processing to provide timely health warnings. Developing all the solutions 
in the cloud causes a lot of network congestion and computational delays.  

When a patient receives an infusion, necessary treatments, surgery, intensive care, or in 
ambulatory services require real-time monitoring. Real-time monitoring may occasionally 
save lives in critical cardiac emergencies, strokes, and to name a few.  Real-time monitoring 
in healthcare necessitates an immediate response. When data is collected from IoT devices and 
delivered to the cloud for processing, the real-time monitoring system is hampered by its 
inability to receive a timely response from the cloud. In most circumstances, IoT Healthcare 
devices do not have enough computing power, and Fog Computing was conceived to meet 
these requirements.  

Fog computing is used in many sectors, including agriculture, clinical decision support 
systems[1], logistics, transportation, etc. The literature review on fog computing is 
summarized in Table 1. Fog computing methodology can be used in healthcare for providing 
health monitoring[2] and real-time notifications and can play an important role in decision 
support systems [3]. In healthcare, fog computing may be used to monitor conditions such as 
high blood pressure[4] , arthritis [5] and diabetes[3] to name a few, and is an excellent resource 
for geriatric care [6]. 

Cloud services are extended to IoT devices through the Fog layer [7], the middle layer 
between the cloud and the device. Fog Computing is applicable in time-critical applications 
such as data analysis of road traffic to predict accidents, medical emergency analysis, etc. Fog 
computing is applicable if the data needs to be analyzed within a fraction of a second and is 
used when the number of devices is huge. They are separated by a considerable geographical 
distance. 

The edge layer, located very close to the device layer, can handle the data obtained from the 
physical layer and an intermediary layer between the fog and device layers. Processing data 
in real time at the source is made possible by edge layers. As a result, the computing operations 
are effectively moved to the network’s edge. In other words, this process takes place much 
closer to the source of the data rather than piping all the data back up to the cloud for analysis 
and action. Routers, switches, and even IoT sensors collecting the data can all be considered 
edge devices if they have adequate processing power. 
     Researchers conducted both simulated and real-time fog computing trials in healthcare[8]. 
As real-time healthcare datasets are very few and the volume of the accessible datasets is small, 
most researchers relied on simulation. For modeling many types of applications, simulation 
systems should include capabilities for physical or virtual resources, network architecture, 
control methods, and data management. There are several simulators available, including 
iFogSim[9] edge-fogcloud [10], iFogSim++, iFogSim2[11], and others. Some simulators like 
edge-fog-cloud [12] were written in Python, while others iFogSim2.0[11]was written in Java. 
Many researchers stated that iFogSim 2.0 is a reasonable alternative for simulating fog 
environments since it has lower latency and less network congestion than other simulators. 

The phrase "fog computing" is not new in the field of healthcare research. Prediction, 
classification, and entity recognition are just a few of the applications that use fog computing. 
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Using the edge and fog computing paradigms, researchers are currently attempting to resolve 
healthcare's semantic interoperability problems. Most solutions to the semantic 
interoperability issue did not rely on real-time processing, but relied on archived data.  

In 2020. Jaleel et.al offered a technique to address the issue of data interoperability by 
leveraging collaborative healthcare equipment for real-time processing. The suggested 
approach could be able to shorten the latency. The fact that the repeated data was not taken 
into account is one of the suggested model's limitations. For example, a patient's temperature 
was recorded by an IoTMD device as 99.7F, 99.7F, 99.7F, and 98.4F at 10 A.M., 11 A.M., 12 
P.M., and 1 P.M., respectively. The computing system has to handle each temperature 
independently even if the data is the same from 10 a.m. to 1 p.m.  In order to process each 
healthcare solution, previous data is required. The historical records may be structured or 
unstructured. Therefore, while creating an IoT healthcare solution, we should take of all kinds 
of data. 

1.1 Semantic Interoperability in Healthcare IoT 
Interoperability refers to the ability of computer systems or software to share and utilize 
information. Suppose Healthcare System A indicates that a patient has been confirmed to have 
Cancer, and healthcare System B reveals that the same patient has been detected with 
Carcinoma. In that case, the two systems should understand that these two sets of terms have 
the same meaning[13]. It is difficult to convey and comprehend clinical meaning in healthcare, 
especially when utilizing a healthcare information system (HIS). Healthcare practitioners 
devote significant time to investigating and analyzing the complexity and relationships 
between clinical data. Single-word phrases like Cancer, thyroid, multiword phrases like very 
high temperature, thyroid glands, and abbreviations like I.T. (Intrathecal) and IV(Intravenous) 
are all examples of medical terms found in the Electronic Health Record (E.H.R.). These words 
are written in uppercase or lowercase characters, or a combination of both, resulting in distinct 
strings for the same term. (Cancer, CANCER, and Cancer all refer to the same thing.) 
Polysemous words are used in the medical field with different meanings in different content. 
In one sense, the name "ALL" stands for acute lymphoblastic leukemia, while in another, it 
stands for "face all." Some medical words are synonymous (e.g.: Cancer and Carcinoma). 
There are specific unique associations between words, such as is-a and part-of. Cancer is a 
disease that affects the liver. The thyroid illness is hypothyroidism. Leg discomfort includes 
left leg pain. Another big issue with medical documentation is Named Entity Recognition. In 
medical terminology, nouns can be a person’s name, disease’s name, a symptom’s name, a 
procedure’s name, and so on.  

Synonyms and co-synonyms can exist within a clinical environment. The heterogeneity of 
electronic health records is increased by the presence of hyponym and hypernym relationships 
and co-hyponyms. Another significant issue with medical documents is the use of holonymy 
and meronymy. Polysemy problems also exist in medical documents, which causes ambiguity 
in healthcare concepts. Each EHR uses a separate medical document format, notations, and 
terminology. Similarly, the terminology used by one IoT-Medical Device and its medical 
acronyms, data format, and measurement units vary. Organizations must use uniform 
terminology systems that reflect the more significant healthcare industry to deliver safe, high-
quality treatment and achieve semantic interoperability in the future. 

1.2  Why We Need Fog Computing in Healthcare 
Fog computing is a networking system that involves edge devices to do much of the 
computation (edge computing), storage, and communication, locally before routing it over the 
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Internet backbone. The term "fog" refers to the cloud-like qualities of IoT devices closer to the 
ground. Rather than transmitting all of this data to cloud-based servers to be analyzed, fog 
computing tries to accomplish as much processing as possible, leveraging computing units co-
located with the data-generating devices such as sensors and smart healthcare devices. 
     As sensor-layer IoT devices are limited in processing and storage capacities, healthcare IoT 
may rely on supporting technologies such as cloud computing. However, healthcare may rely 
on supporting technologies such as fog computing to overcome bandwidth, latency overhead, 
and security issues. According to [14], fog computing is an appropriate platform for addressing 
latency challenges in healthcare. 
Contributions of the paper is listed as follows 

1. Healthcare semantic interoperability is envisaged using fog computing. 
2. A data granularity architecture is used to integrate the IoTMD data.  
3. Four algorithms have been developed to address lexical, morphological, and linguistic 
issues with the medical documents. 
4. Utilizing simulation studies with iFogSim2.0, which meets the requirements for reduced 
latency, reduced energy consumption, reduced network usage, reduced simulation time, 
and reduced migration time, the system’s performance is assessed. 
The article is organized as follows. Section 2 presents the overview of the literature review, 

and section 3 depicts the proposed system architecture. Implementation details are represented 
in section 4. section 5 discusses the obtained result and section 6 concludes the article. 

2. Related Works 
Healthcare IoT devices’ large volume of data necessitates latency-sensitive processing, which 
is impossible when the applications are deployed in remote cloud data centers [15]. A fog node 
is placed between the device and application layer to resolve the latency issues. A fog node 
can be any device that includes processing, storage, and network connectivity element [16] . 
In most healthcare fog solutions, a three-layer architecture with the bottom layer as the device 
layer, the middle layer as Fog, and the upper layer as the Cloud layer was proposed[17]. 

Even before 2010, several researchers pointed out that cloud computing was vulnerable to 
latency and bandwidth difficulties. At an ACM conference in 2014, CISCO presented Fog 
computing[14] to the world. A solution proposed by Malik et.al [17]consisted of three-layer 
architecture. The bottom layer was the Device layer, the middle layer was Fog, and the upper 
layer was the Cloud layer. When the number of sensing devices increases considerably, 
problems such as the processing time of time-critical IoT applications will increase due to 
network congestion caused by offloading data to the cloud and uploading data from many IoT 
generators [12]. 

Table 1. Related Works 

Article Implementation  
Tools / 

Technique used 
Application                

area 
Evaluation 
Performed 

[4] Real Time, 
Archived 

OMNET++ ,Bayesian 
Classifier, Thread 

Protocol 

Arthritis 
analysis 

in human beings 

Packet delivery rate, 
Packet delivery 

ratio, and Response 
Time 

[2] Real Time, 
Archived 

Type-2 neutrosophic 
and VIKOR technique 

Type 2 diabetes 
diagnosis 

Comparative 
analysis 

with TOPSIS and 
SAW 

Execution time 
between 
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optimization and 
non-optimization 

[5] Real time, Archived MySignals, HW V2, 
Arduino Uno, 

ESP 8266 

Elderly care SUS(System 
Usability Scale 

[14] Not 
Implemented 

 Diabetic device 
data processing 

 

[3] Real time 
using 

datasets, Archived 

KNN, 
MLP,LR, 

ANN 

Hypertension 
attack 

Classification 
Accuracy, 

Classification 
response time, 

delay time 
            

Numerous simulators were created to mimic the fog computing environment. Some of these 
include iFogSim, Edge-Cloud Fog, etc. A simulator titled Edge Cloud Fog [12] was created in 
2017 using a three-layer, node-oriented methodology. The Fog was positioned between the 
data store and edge layer, with an edge as the outermost layer and a datastore as the innermost. 

Rajkumar Buyya and his team developed iFogSim[18] simulator based on two processing 
models, the sense-process-actuate and stream processing models. The developed simulator 
was based on Java language. It supports the mobility of fog nodes. 

Some authors have proposed a Fog computing-based paradigm to diagnose diseases. Sood 
et.al [4] proposed a fog-based healthcare framework to identify and monitor hypertension 
attacks in human beings, and they used an artificial neural network to predict hypertension. 
Internet of Things and Fog Computing presented a real-time deployment of an E-health system 
for monitoring the health of older people [6]. The My Signals H.W. V2 platform and an 
Android app that functions as a fog server were used to collect pharmacological and overall 
health parameters from the elderly regularly. The parameters were collected, evaluated, and 
cached before being sent to the cloud via a specific REST API using the JSON data model. 
Data distribution, communication, and management layers were the three layers in the 
suggested design. The data distribution layer makes use of MongoDB. A decision support 
system for healthcare IoT was created using soft computing and fog computing principles. The 
six levels of the Fog computing architecture in the suggested research [3] were the physical 
and virtualization layer, monitoring layer, pre-processing layer, temporary storage layer, 
security layer, and transport layer. 

Ahmed et. al[19] have suggested another fog computing-based healthcare monitoring 
system.  The suggested system consisted of three layers: a sensor network, a fog, and a cloud 
layer. The sensor network layer contains a variety of sensors, such as E.C.G. sensors, B.P. 
sensors, and temperature sensors. The fog layer handled data security, compression, 
notification service, data analysis, and local storage. The cloud layer handled big data 
processing, ample data storage, and disease prediction. One of the primary drawbacks of the 
suggested technique was that it was only applicable to images. 

For handling diabetic healthcare IoT data, David et al. [20] compare cloud computing with 
edge/fog computing environments. The bottom layer comprises diabetic instruments with 
sensors, while the intermediate layer includes intelligent devices, hubs, routers, and gateways. 
The top layer, referred to as the Cloud layer, contains all computing components. Hassen et al. 
Ben [6]created a real-time home hospitalization system using the healthcare and 
environmental parameters of five persons aged 56 to 61. The data was gathered using My 
signal hw V2 in their proposed system, while Android phones and tablets are used as fog 
servers. The system’s main drawback was that the dataset’s size was too small. Using the Fog 
computing paradigm, a medical decision support system based on fuzzy set theory was 
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presented for healthcare IoT by Abdel[3]. Applying type 2 neutrosophic and the V.I.K.O.R. 
technique, a type 2 diabetes diagnosis method was developed. 

Bayesian classifier was used to analyze human arthritis in a fog computing environment [5], 
while the THREAD Protocol was the communication protocol applied in the proposed system. 
A total of 431 arthritis patients were included in the case study. OMNet++ was used to design 
the application. Three evaluation metrics, namely packet delivery rate, packet delivery ratio, 
and response time, were tested on the proposed system with fog, fog, and thread environment, 
and without fog and thread environment to validate the results. Thread and fog environments 
had the shortest response times, but their packet delivery ratios were the highest. 

Sood et al.[4] suggested a healthcare architecture based on IoT fog for identifying human 
hypertension. The proposed system consists of a cloud system, a fog system, and an IoT-
focused user subsystem. Internet-of-things user subsystems deal with a wide variety of data. 
Data granulation, risk evaluation, stage categorization, and warnings were all handled by the 
fog subsystem. Within the cloud subsystem, data was kept. Sarkar S et.al [21] compared fog 
computing against cloud computing and claimed that at least one-fourth of IoT applications 
require real-time, low-latency services. 

Several authors, Markus A et.al [22], Ashouri et.al [23], and Naha R K et.al [24] to mention 
a few, conducted various analyses on the quality of simulators. They claimed iFogSim was 
one of the best simulators accessible, due to its event-driven and open-source nature, as well 
as its implementation language. According to Markus et.al [22],  63% of simulators are event-
driven and 70% of them are written in the language Java. According to [23], iFogSim was the 
optimal tool for modeling environments that demand faster response durations and higher 
processing usage, as well as lower bandwidth and energy consumption. 

3. Proposed Architecture 

 
                                     Fig. 1. The Architecture of the Proposed System 
 
Fig. 1 shows the proposed four-layered Edge Fog-based semantic interoperability approach. 
In this architecture, physical layer devices such as wearable sensors, implanted sensors, 
wireless and wired IoT devices, environmental sensors, sensors attached to the human body, 
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and other intelligent healthcare IoT devices can transmit sensed medical data to edge nodes 
along with their geospatial locations. The physical layer includes unstructured E.H.R. also.  
   The layer nearer to the physical layer is called the edge layer. The edge layer often uses 
resources like mobile phones, tablets, laptops, workstations, etc., as computing facilities. 
The two computing modules in the edge layer are modules for data granularity and modules 
for ontology integration. The medical IoT data received from intelligent devices require extra 
processing with the help of the UMLS ontology for storing and indexing the IoT medical data. 
The Data Granularity module is in charge of processing IoT medical data. The processed data 
is transferred to the fog layer, comprised of fog nodes designated as fog gateways. These 
gateways served as a router, switches, and other computational services, as well as providing 
storage. Some fog gateways have been renamed fog proxy, providing communication with the 
third layer, the cloud layer. 
   After being transformed into an intermediate format comprehensible by all healthcare 
professionals, it can be readily translated to the target formats, where the processed data is 
stored in the cloud. In this case, the fog node serves as a link between the cloud and the end 
devices. 
   Smartphones, tablets, or desktops P.C. can act as fog gateways. The computational and 
storage capacities of these devices are limited. The sensed data from the physical layer is 
transmitted to the cloud for additional processing and calculation after the initial essential 
computation. Every hospital has one or more fog nodes, which sends the analyzed data to the 
cloud. If the caregiver needs access to previous data, the fog node may get it from the cloud 
and make it available. Suppose a caregiver needs medical information from another hospital. 
In that case, the fog node can retrieve the intermediate from the cloud and send it to the 
caregiver, who can decode it into the necessary format. All data packets received are not 
transmitted to the cloud computing module. Only applications with time flexibility are routed 
to the top levels. 
    The cloud has the capacity to translate medical data collected from numerous fog nodes into 
an intermediate format in order to maintain interoperability, and it may store the processed 
data for a longer period of time.  

 
                                            Fig. 2. Micro Service Architecture 
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Fig. 2 depicts the semantic Interoperability model’s whole architecture. Structured health 
records, unstructured E.H.R. information, and IoT MD data are fed into the model. 
Unstructured medical records are pre-processed initially. The TPC(Term Phrase Concept) 
generation module accepts preprocessed data, structured data, and IoT MD data in the next 
module. Using an ontology called UMLS[25], the TPC generation module retrieves terms, 
phrases, and concepts from medical data. H3M module receives the extracted concepts. H3M 
stands for holonymy, hypernymy, hyponymy, and meronymy. The repetition of concepts in 
this module can be minimized. The H3M module follows, which identifies various linguistic 
relations. These are sent to the polysemy module, which identifies various polysemous words. 
Anaphora resolution is the next module. Finally, there is the intermediate representation 
module. 

3.1 iFogSim and Its Components 
Rajkumar Buyya and his team created iFogSim [18], an IoT-enabled fog computing simulator, 
as an expansion of CloudSim Software. Physical components, logical components, and 
managerial components are the three basic types of components found in iFogSim. Sensors, 
fog devices, and actuators are all physical components. Logical components include the 
application edges and modules. The controller and mapping are management components. 
iFogSim 2.0[11] was created in 2019 as an expansion of iFogSim to accommodate the mobility 
feature of IoT devices. 
The salient features of iFogSim2 are:  
1. Data parser module for receiving and processing data from external files. 
 2. Introduction to module migration mobility management logic for random and directed 
mobility methods  
3. Cloud-centric, non-hierarchical, intra- and inter-cluster implementation options are 
available. 

3.2 Application model 
One or many hospitals might be portrayed in the fog environment. The fog computing 
environment is configured for numerous branches if a hospital has several sister branches. In 
iFogSim, there is a hierarchical placement approach. If a Fog node cannot handle a module 
allocated to it, the controller object moves the module to an upper-level fog node. In iFogSim, 
application models describe the simulated system’s underlying workflow. Distinct application 
models show connections between different modules in different ways. Two types of 
application models are employed in our suggested work: master salve and sequential.  

EHR data acquisition, Pre-processing the E.H.R. data, IoT MD data acquisition, Creation 
of Terms, phrases, and Concepts, Hypernymy-hyponymy, holonymy-meronymy resolving, 
polysemy resolving, UMLS integration are all part of the S.I. application model.  
    The E.H.R. data acquisition microservice is loaded on the hospital’s desktop, laptop, or 
workstation computer. The medical records that have previously been stored are analyzed and 
transferred to the pre-processing microservice module, which is likewise installed on the 
hospital’s desktop, laptop, or workstation computer. To extract relevant medical terms from 
EHR data, various pre-processing techniques such as stemming, chunking, and parsing are 
used. TPC (Words, Phrases, Concepts) generation microservice module is installed on Fog 
nodes and receives these medical terms. In order to retrieve the Concept Unique Identifier, all 
relevant words supplied from the pre-processing microservice are validated in the UMLS 
repository. An SQL database is used to store the UMLS repository. External database UMLS 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO.4, April 2024                                889 

 

may be accessed via TPC generation microservice, h3m resolving microservice, and polysemy 
resolving microservice. 

3.3 Mobility of the Fog Node 
Both human and intelligent devices’ mobility can impact the functioning of any Internet of 
Things system. We used two types of mobility patterns in this experiment: directed mobility 
and random mobility [11]. Individuals and IoT devices can move quickly in directed mobility 
models. To put it into practice, we first identified a set of evenly spaced locations across India. 
Later, the class Simevents of CloudSim 5.0 is used to simulate the movement of persons and 
IoT devices. During the direct mobility simulations, a constant speed is maintained.  

Random mobility patterns are created using the RandomMobilityGenerator class in the 
Random mobility model. The user’s direction, stopping criteria, and speed are all elements 
that influence mobility.            

                Table 2. Sample Real Time IoTMD Monitoring data 
Age (ADT) 

12yrs                Allergies-vancomycin 

27-06-2021  7 AM  8.00 A.M  8 A.M  9 A.M 
Fantanyl 15mcg   40   
Midazolan 
0.9mg  

    

Paracetamol 
0.5mg      

O2 
     

SPo2   98  96  
EtCO2 4  3.8    
Temperature(F)  99.3  99.3  100.3  
     
Pulse  80  80  80  93 

4. Implementation Details 
We import all necessary libraries before creating a primary class. In the main class, we start 
by building actual physical objects like actuators, sensors, and fog devices. The number of 
areas, sensors per area, and other variables are declared, and the number of areas and hospitals 
is the same. If the "private static Boolean cloud" is false, all processing is carried out in the 
fog nodes. Otherwise, the processing is done on the cloud. The module mapping module 
assigns each module to the devices. 

 In iFogSim, developing an application is similar to creating a Directed Acyclic Graph 
(D.A.G.). The function "AddAPPMODULE," which is part of the application class in iFogSim, 
is used to create vertices for the D.A.G. We must describe the edges connecting the vertices 
once we have created all of the vertices (modules). The edges are specified using the 
"ADDAPP EDGE" function. The "ADDTUPLE MAPPING" function specifies all input output 
relationships. Each Task in iFogSim 2.0 can be 

 
       𝑇𝑇𝑇𝑇 = {𝑇𝑇𝑇𝑇1,𝑇𝑇𝑇𝑇2,𝑇𝑇𝑇𝑇3 … … … … .𝑇𝑇𝑇𝑇𝑇𝑇}                                     (1) 

Each TSi has attributes  
 𝑇𝑇𝑇𝑇𝑖𝑖  = {𝑇𝑇𝑇𝑇𝑆𝑆𝑖𝑖 , 𝐿𝐿𝑇𝑇𝑆𝑆𝑖𝑖  ,𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖, 𝑖𝑖𝑖𝑖𝑇𝑇𝑠𝑠𝑖𝑖  }                                              (2) 
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STsi,LTsi,TTsi,idTsi , where STsi represents the state of the task, LTsi represents the Length 
of the task, TTsi represents the Type of the task and idTsi represents the identifier of the task 
TSi. Each edge node is represented as 

𝐸𝐸 = {𝐸𝐸𝐸𝐸1,𝐸𝐸𝐸𝐸2,𝐸𝐸𝐸𝐸3 … … …𝐸𝐸𝐸𝐸𝑇𝑇}                                         (3) 
ENi represents edge node i. Each edge node is characterized by the features  

𝐸𝐸𝐸𝐸𝑖𝑖 = {𝑇𝑇𝐸𝐸𝐸𝐸𝑖𝑖,𝐶𝐶𝐸𝐸𝐸𝐸𝑖𝑖,𝐵𝐵𝐸𝐸𝐸𝐸𝑖𝑖 }                                                    (4) 
SENi represents the storage capacity of Edge node ENi.      represents the computing capacity 
of Edge node ENi. BENi represents the battery energy of Edge node ENi.  
Each fog node is represented as 

𝐹𝐹 = {𝐹𝐹𝐸𝐸1,𝐹𝐹𝐸𝐸2,𝐹𝐹𝐸𝐸3 … …𝐹𝐹𝐸𝐸𝑇𝑇}                                              (5) 
FNi represents Fog node i. Each Fog node is characterised by the features  

𝐹𝐹𝐸𝐸𝑖𝑖 = {𝑇𝑇𝐹𝐹𝐸𝐸𝑖𝑖,𝐶𝐶𝐹𝐹𝐸𝐸𝑖𝑖,𝐵𝐵𝐹𝐹𝐸𝐸𝑖𝑖}                                                       (6) 
SFNi represents the storage capacity of Fog node FNi. CFNi represents the computing capacity 
of Fog node FNi. BFNi represents the battery energy of Fog node EFi. 

4.1 Data granularity  
The data format for physical device is represented as the following categories.  
Physical device as a vital Sensing machine  
{PD id, PDS, PDVN ,CV,VR,UHIDP , PL,UHIDC,CL,TS,SPD}  
(a) PDid —Identifier of the physical device  
(b) PDS —Status of the physical device  
(c) PDV N —Name of the vital that physical device read  
(d) CV —Count of the vital  
(e) VR —vital reading  
(f)UHIDP —Unique hospital identifier of the patient P  
(g) PL —Location of the patient 
(h)UHIDC —Unique hospital identifier of the Caregiver C  
(i) CL —Location of the caregiver.  
(j) TS —Time stamp  
(k)SPD —Specification of the physical device 
 

Table 3. IoTMD Matrix 

UHID  
 

TimeStamp  
 

Item Value 

453657  27/06/2021   7 A.M  
 

Temperature  99.3 

453657  27/06/2021 8 A.M  Temperature  100.3 
453657   27/06/2021 7 A.M  Pulse  

 
80 

453657   
 

27/06/2021 9 A.M  Pulse  93 

747589  27/06/2021 7A.M  Temperature  
 

102 

6357426  27/06/2021 7 A.M  Temperature  100.4 
 

353657  27/06/2021 7. A.M 
 

Food intake 
 

Idly 20gm 
 

447589  27/06/2021 8 A.M  Urine Output  0.5litre 
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Physical device as a smart medication box  
{PDid, PDS,PDMB,UHIDP , PL,UHIDC , TS,SPD,Dn,Ds,Rm,MS,Balance}  
(a) MS —Status of Medication  
(b) Balance —Balance amount of medication in smart medicine box. 

 
The device(machine) identifier is represented as PDid. Unique healthcare identifier of the 
patient is represented in Pid. Category (Type) of the vital is represented as TV. Number of 
vital recorded is represented as NV 

We use typical medical data processing cycles to deal with unstructured EHR, such as 
parsing, stemming, chunking, phrase and concepts identification, and so on. A novel approach 
is used to deal with IoT MD data. A sample IoT MD data is shown in the Table 2. As smart 
healthcare devices generate a large amount of data, some of which is duplicated, an automata-
based data representation strategy is employed to decrease data redundancy and consequently 
space. 
Sony P et al [26] suggested a finite automata-based indexing strategy for healthcare IoT data. 
The requirement for separate automata modelling for each patient is the disadvantage of 
research method proposed in [26]. Here we have developed three separate automata for three 
different kinds of medical data. 
1.Vital Automata  
2. Symptom Automata 
3. Medication Automata 

The vital automata VA(Q,Σ,δ,q0,F, Edgein,Edgeloop) Q represents set of states in triplet 
format(TV:NV:VV) TV represents the type or name of the vital, NV is the no of Vital values 
of TV, VV is the Value of the Vital. Σ is the input in triplet format (Pid:Mid:TS). The patient 
identity is Pid, and Mid represents the machine identifier (identifier of the sensor device or the 
medical device) and TS is the Time stamp. δ is the transition function from Q × Σ to Q 
(TVi:NVVi:VVi) × (pid,Midk:TS) → (TVi:NVVi:VVj). A special state Φ∈ F is the set of final 
states represented as double sided oval. Edgein is the incoming edge of a state 
(TVi:NVVi:VVi). Self loop of a state (TVi:NVVi:VVi) is represented as Edgeloop. Advantage 
of automata modelling is the easy retrieval of data and reduction in redundancy. 
Symptom automata MA(Q,Σ,δ,q0, Edgein,Edgeloop). Q represents set of states with five 
elements in each state of the form Pid,Sid,Ts,Severity. Pid represents patient identifier. Sid 
represents the unique identifier(CUI) of symptom. Ts is timestamp. Severity is the level of 
symptom. Σ is the input in triplet format (Pid:TS). δ is the transition function from Q × Σ to Q. 
Pid,Sid,Ts,Severity × (Pid:TS) to Pid,Sid,Ts,Severity.F is the set of final states represented as 
double sided oval. Edgein is the incoming edge of a state (Pid,Sid,Ts,Severity). Self loop of 
the state is represented as Edgeloop. 

Medication automata MA(Q,Σ,δ,q0,F, Edgein,Edgeloop). Q represents set of states with 
five elements in each state of the form Medication Name, dose, Time, and Route of 
administration, and Status. Σ is the input in triplet format (Pid:Did:TS). Pid represents the 
patient identifier, Did represents the doctor id, and TS represents the timestamp. δ is the 
transition function from Q × Σ to Medication Name, dose, Time, Route of administration, 
Status × (Pid:Did:TS) → Medication Name, dose, Time, Route of administration, Status.F is 
the set of final states represented as double-sided oval. Edgein is the incoming edge of a state 
(TVi:NVVi:VVi). Self loop of the state is represented as Edgeloop. When the machine reaches 
the final state, the patient has finished a particular course of medication. A two-dimensional 
matrix(a sample 2-D matrix is shown in Table 3 is generated by using the previously 
mentioned automata. 
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4.2 UMLS Integration and Linguistic Processing 
The National Library of Medicine (NLM)’s Unified Medical Language System (UMLS)  has 
three knowledge sources: Metathesarus, Semantic network, and Specialist lexicon and lexical 
tools. CPT, ICD-10-CM, LOINC, MeSH, RxNorm, and SNOMED CT medical terminology 
and codes, as well as their hierarchies, meanings, and other relationships and attributes, are all 
included in Metathesarus. A Semantic Network is a representation of semantic categories and 
their relationships. There is a large syntactic lexicon of biomedical and general English, as 
well as tools for normalizing texts, generating lexical variants, and creating indexes.  
Using the iFogSim tools, we can connect to any external database we wish. For example, 
depending on the events created in the Controller class, we might create an object in the 
Controller class and then save the data in the database on a regular basis. We could also read 
the database in place. Another scenario is reading data from the database in the program’s 
main function while building the environment. We can also store all of the data obtained after 
the simulation to the database using the main function. Here we created an external database 
UMLS in the main function of the application. The following steps are used in linguistic 
processing. 
 
1. Medical Concept Identification  
2. Synonymous words Identification 
3. Polysemous words Identification 
4.Holonymy-Meronymy Identification  
5. Hypernymy -Hyponymy Identification 
         
The medical concepts are identified by the concept processing algorithm represented in [27]. 
Algorithm 1,2,3 and 4 represent the synonymy, polysemy, holonymy and hypernymy 
identification of medical documents. After resolving the linguistic issues, HSDF (Health Sign 
Description Framework) creation microservice is called. HSDF creation algorithms specified 
in the article [28] are used for the creation of healthcare signs. 
 

Algorithm 1. Synonymy Resolution 
 Input : Text String X 
 Output: Synonymous Strings 
1 While X € Medical Concept Γ 
2  Do find CUI(X) from MRCONSO Table of UMLS 
3  For each i, γi  € Γ    do 
4   If CUI(X) ==CUI(γi ) 
5    Add synonym set of (X) to STR(γi  ) 
6    Else 
7    ADD CUI(X) to Synonym Set 
8   Endif 
9  End For 
10 End While 

  
Algorithm 2. Polysemy Resolution 
 Input : Text String X 
 Output: Polysemous Table ψ 
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1 While X € Medical Concept Γ 
2  Do find CUI(X) from MRCONSO Table of UMLS 
3  For each CUI(X) do  
4   Find STR(CUI(X) from MRCONSO Table 

Add STR(CUI(X) to Polysemous Table ψ 
5  End For 
6 End While 
  
Algorithm 3. Holonomy Meronymy Resolution 
 Input : Text String X1,X2 
 Output:  Holonomy and Meronymy  Table 
1 While X1, X2  € Medical Concept Γ 
2 
3 

 Do find CUI(X1) from MRCONSO Table of UMLS 
Do find CUI(X2) from MRCONSO Table of UMLS 

4  If  RELA(X1,X2)= “part-of” then 
5 
6 

  Holonymy (X1)=X2 
Meronymy (X2)=X1 

7  End If 
8 End While 

 
Algorithm 4. Hypernymy Hyponymy Resolution 
 Input : Text String X1,X2 
 Output:  Holonomy and Meronymy  Table 
1 While X1, X2  € Medical Concept Γ 
2 
3 

 Do find CUI(X1) from MRCONSO Table of UMLS 
Do find CUI(X2) from MRCONSO Table of UMLS 

4  If  RELA(X1,X2)= “is-a” then 
5 
6 

  Hypernymy (X1)=X2 
Hyponymy(X2)=X1 

7  End If 
8 End While 

 

4.3 Simulation Environment 
1. Duration of the experiment: 35000seconds  
2. No of location change events: 98  
3.Network architecture: heterogeneous  
4. Deployment: Grid and Uniform  
5. No of patients in one cluster: 10  
6. No of biosensors in one cluster: 48 
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Table 4. Configuration Parameters 
Configuration 

Parameters Cloud VM Proxy Server Fog Gateway Smart Phone 

Count  8 4 16 52 
Speed (MIPS) 2000-2500 2000-2500 2000-2500 400 

RAM(GB) 16 16 8 2 
Uplink Bandwidth 

(Mbps) 80 20 80 150 

Downlink 
Bandwidth (Mbps) 80  40 130 200 

Busy Power (MW) 106.223 106.223 106.223 67.56 
Idle Power (MW) 82.34 82.34 82.34 61.78 

 
An Intel Core 2 Duo CPU operating at 2.33 GHz, 16 G.B. of RAM, and iFogSim 2.0 are used 
to execute the simulations. Tables 4 and 5 provide the configuration and simulation 
parameters, respectively. Healthcare sensors can operate in three modes: sustained, sleep-
awake, and periodic. When a patient is in a critical care unit, in an emergency, or has surgeries 
or procedures, the patient’s operating mode is set to Sustained. Sleep Awake mode is set when 
the person is in a normal situation. Sensors are set to Periodic mode when health data is 
required on demand. 
    For the model simulation, two separate datasets are used. The first is structured EHR data, 
while the second is data from IoT medical devices. IoT MD data set is generated from the 
patients residing in 25 different states of India. For each user, we create smartphones as a 
gateway. Through tier-1 nodes in the Fog layer, the gateway may connect with tier-0 nodes in 
the cloud layer. Cloud-centric, nonhierarchical, and intra/inter-cluster migrations are the types 
of migration methodologies employed. 
    The Clustering class implemented in iFogSim can be used to cluster Fog nodes in order to 
improve storage and computing capacity. The IoT MD data set comprises the locations of each 
fog node; locations are parsed using the data parser class. Each node has access to information 
about its parent, children, communication range, and bandwidth. 
      

Table 5. Simulation Parameters 
Microservice 

Module RAM(GB) Input (MB) Output (MB) CPU Length 
(MIPS) 

EHR Data Acquisition 2  3.5 10000 
IoTMD Data 
Acquisition 2  1 8000 

Pre-Processing 2 3.5 2.5 12000 
TPC Creation 2 3.5 5 14000 

H3M Resolving 2 5 2.5 14000 
Polysemy Resolving 2 3 2.5 12000 

Intermediate 
Representation Module 4 2.5 3.5 10000 

5. Results and Discussion 
The results obtained from the comprehensive simulation and performance analysis shed light 
on the efficacy of the proposed semantic interoperability solution within a fog computing 
environment for healthcare IoT. In this section, we present a detailed discussion of the findings, 
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examining key metrics such as simulation time, mobility scheme performance, microservice 
migration, placement algorithms, computation time, task delay, network usage, and effect of 
linguistic processing. These results provide valuable insights into the system's behavior under 
various scenarios, allowing for a nuanced understanding of its strengths, limitations, and 
potential avenues for improvement. Through a thorough exploration of each aspect, we aim to 
contribute to the ongoing discourse on optimizing healthcare data management and processing 
in the era of IoT, fog computing, and semantic interoperability. 

5.1 Simulation Time Analysis 

                                  
              Fig. 3.  Simulation Time                                         Fig. 4. Network Usage during Migration   
 

In the simulation, the time taken from submitting IoT Medical Device (IoTMD) data to the 
creation of an intermediate form is compared for different types of data.  Initially, we sent 
IoTMD data to the simulator, then unstructured EHR data, and ultimately both to the simulator 
for analysis. Simulation time is observed to be shorter for documents containing only IoTMD 
data, longer for documents containing only Electronic Health Record (EHR) data, and 
intermediate for documents containing both. This variation is visually represented in Fig. 3. 

 

                
Fig. 5.  Migration Time of Application Module                 Fig. 6.  Network Usage during Migration 

 
To evaluate the performance of mobility schemes in diverse clustering environments, 

migration time and network usage are analyzed. Across cloud-centric, non-hierarchic, and 
inter-cluster methods, the random mobility scheme exhibits higher migration time and network 
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usage compared to the directional mobility scheme. Fig. 5 illustrates the migration time of 
microservice modules using both random and directed mobility strategies.                                         

Fig. 6 demonstrates network bandwidth usage during the migration of microservice modules. 
In the cloud centric approach, migrating from a fog gateway to the cloud and back increases 
latency due to the involvement of numerous fog nodes. The non-hierarchical approach, 
leveraging mesh connections, reduce network usage, particularly when compared to random 
mobility in all three systems.    The loop responsible for translating unstructured EHR into 
intermediate representation and the loop responsible for transforming IoT MD data into 
intermediate representation are key control loops in the proposed paradigm. Both loops need 
communication between many components. These methods of communication, as well as the 
processing latency, contribute to the delay. The increased usage of networks for cloud 
environments might cause network congestion and application performance deterioration. The 
use of fog nodes can help to minimize network traffic. 

        
                        Fig. 7. Latency                                                     Fig. 8. Network Usage                            
 
Computation time of a task in Edge node ENi is represented as  

𝐶𝐶𝑇𝑇(𝐸𝐸𝐸𝐸𝑖𝑖) = 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿 𝑐𝑐𝑇𝑇𝐶𝐶𝑇𝑇𝑐𝑐𝑖𝑖𝐿𝐿𝑐𝑐   

                     (7)                                                       

𝐶𝐶𝑇𝑇(𝐸𝐸𝐸𝐸𝑖𝑖) = 𝐿𝐿𝑇𝑇𝑆𝑆𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

                                       (8)                                                                              
      
Computation time of a task in Fog node FNi is represented as  

𝐶𝐶𝑇𝑇(𝐹𝐹𝐸𝐸𝑖𝑖) = 𝐿𝐿𝑇𝑇𝑆𝑆𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

                                              (9)                                                                                     
When the initial piece of healthcare data is sent out from the source, the latency or delay 
measures how long it takes for the full batch of healthcare data to arrive at the destination[29]  
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿 = 𝜓𝜓𝑇𝑇 + 𝜑𝜑𝑇𝑇 + Ф𝑇𝑇 + ƛ𝑇𝑇                                                                                          (10) 
 
𝜓𝜓𝑇𝑇  represents propagation time, 𝜑𝜑𝑇𝑇  represents transmission time, Ф𝑇𝑇  represents queuing 
delay and ƛ𝑇𝑇 represents processing time. Propagation time of data is the amount of time it 
takes to get from its source to its destination. 

𝜓𝜓𝑇𝑇  =  𝐷𝐷
𝜓𝜓𝑠𝑠

                                                          (11)                                                                                                       
Distance is represented as D, ζS represents Propagation Speed. Transmission time is the 
amount of time needed to transmit a message depends on its size and the channel’s bandwidth.  

𝜑𝜑𝑇𝑇=𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐵𝐵                                                                      (12) 
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The amount of time require d for each intermediate or end device to retain the message before 
processing it is known as the queuing time. The queue time is a variable component fluctuates 
according to the network demand.  
Latency cloud layer and fog layer are shown in Fig. 7. Since most of the processing is done in 
the fog layer in the proposed system, latency and network usage in the fog layer is much higher 
than that of cloud layer. Network Usage of cloud and fog layer is shown in Fig. 8.              
 

           
Fig. 9. Latency of Linguistic Processing        Fig. 10. Network Usage of Linguistic Processing                
 

We simulated the system in three environments to assess its performance in linguistic 
processing. 1. Polysemy resolution system 2. System for hyponymy -hypernymy resolution 
with polysemy 3. System for resolving polysemy, hypernymy, hyponymy, meronymy, and 
holonymy. In comparison to the other two systems, the third system has lower latency and 
network usage. Fig. 9 and 10 depict the latency and network usage of linguistic processing, 
respectively. Fig. 11 depicts the average delay of different placement strategies.  

 

 
      Fig. 11. Average delay of different placement strategies 
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      Fig. 12. A Sample Topology of the Proposed System 

 
The semantic interoperability solution proposed by Gupta et.al is not based on fog computing. 
There is no cloud fog interoperability with the approach suggested by Rahmani et al [30], 
Ahmad et al [1] and Gupta et al[31]. A sample topology and comparison with existing work 
is shown in Fig. 12 and Table 6 respectively. Other than our technique, none of the solutions 
are appropriate for use with unstructured EHRs and do not offer document level 
interoperability. 

If the simulation framework does not comprehensively model various types of edge devices 
commonly found in healthcare, such as wearable health monitors, smart medical devices, or 
point-of-care diagnostics tools, the simulation results may not accurately reflect the 
interactions and dynamics at the edge of the network. Ifogsim 2.0 might not fully capture the 
diverse characteristics of fog nodes that are crucial in healthcare environments. For instance, 
fog nodes in healthcare may include local servers, gateways, or edge computing devices with 
specific processing capabilities, storage capacities, and communication protocols. Inadequate 
representation of these characteristics can lead to a lack of fidelity in the simulation. Edge and 
fog computing elements in healthcare may communicate using various protocols depending 
on the devices and technologies involved. If the simulation framework oversimplifies or 
overlooks this heterogeneity, it may not capture the intricacies of communication challenges 
and opportunities in a healthcare setting. 

 
                     Table 6. Comparison with similar works 

 
Article  

 

Applicable  
 to 

Healthcare 
Domain 

Applicable to  
Unstructured 

Data 

Document Level 
Interoperability 

satisfied 

Cloud Fog 
Interoperability 

 
Fog based 

Rahmani et.al[30] YES NO NO NO YES 
 Ahmad et.al [1]  YES NO NO NO YES 

Gupta et.al[31] YES NO NO NO YES 
Mahmud et.al[32] YES NO NO YES YES 

Our Method YES YES YES YES YES 
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6. Conclusion 
Fog computing (FC) is emerging as a novel paradigm for Small and Medium-Sized Enterprises 
[29]. Research on fog computing is currently in an exploratory phase, with several pressing 
issues requiring in-depth investigation. These challenges span across platform, infrastructure, 
and application domains, with critical issues including the exploration of task partitioning, 
scheduling methodologies, and resource allocation strategies [30]. Interfog communication 
and latency are one of the key disadvantages of Fog Computing [31].  

Depending on the device, healthcare sensors produce data in a variety of forms and units. 
Each healthcare organization use disparate format, language, and representation of healthcare 
data [33]. One of the most important research topics in the healthcare industry is semantic 
interoperability. Most hospitals keep medical data on the cloud because it is so massive. But 
in a cloud setting, there is general performance delay. In the Fog environment, this article 
suggests a semantic interoperability solution for IoT in healthcare. Both structured and 
unstructured medical documents are supplied into the suggested system.         

The suggested technique makes use of an ontology Unified Medical Language System 
(UMLS) created by the National Library of Medicine (NLM). With the use of the UMLS 
ontology, four algorithms are suggested to resolve lexical, morphological, and other linguistic 
problems in the medical documents. The data granularity microservice for the edge layer 
introduces an automata-based storage format to drastically reduce on redundancies in IoT-MD 
data 

The suggested model-based fog environment decreases latency and network congestion as 
a result of its observations. The suggested technique uses linguistic processing to minimize 
network latency and congestion. In three separate scenarios, we evaluated the system's 
linguistic processing capabilities. 1. Polysemy resolution system 2. A method for dealing with 
polysemy hypernymy and hyponymy simultaneously. 3. A technique for resolving polysemy, 
hypernymy, hyponymy, meronymy, and holonymy.  In comparison to the other two 
approaches, the third one has less latency and network delay. As a future scope we would like 
to implement the microservices presented in the fog layer using any deep learning techniques 
for getting better accuracy.  

In addition to implementing microservices with deep learning techniques for enhanced 
accuracy, further emphasis should be placed on fortifying the system's security aspects. This 
includes the integration of advanced encryption methods, access controls, blockchain 
technology, and privacy-preserving techniques to ensure data integrity, protect patient 
information, and comply with relevant regulations. Continuous security audits, user education 
initiatives, and collaboration with cybersecurity experts will be pivotal in maintaining a robust 
and secure healthcare data environment. 
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